(+)-CORYNOLINE 11-O-SULFATE FROM CORYDALIS INCISA*

K. IWASA†, N. TAKAO†, G. NONAKA‡ and I. NISHIOKA‡

† Kobe Women's College of Pharmacy, Motoyamakitamachi, Higashinada-ku, Kobe-shi, 658 Japan; ‡ Faculty of Pharmaceutical Sciences, Kyushu University, Maedashi, Higashi-ku, Fukuoka-shi, 812 Japan

(Received 2 February 1979)

Key Word Index—Corydalis incisa; Papaveraceae; alkaloid; (+)-corynoline 11-O-sulfate; hydrobenzo[c]phenanthridine.

Abstract—A novel O-sulfated alkaloid isolated from Corydalis incisa was characterized as the 11-O-sulfate of (+)-corynoline.

INTRODUCTION

The alkaloidal components of *Corydalis incisa* Pers (Papaveraceae) have been studied by several groups of workers [1–3] and found to be very rich in hydrobenzo-[c]phenanthridine-type alkaloids. Amongst them corynoline, the main alkaloid in this plant, has been isolated as a racemate. Recent careful examination in our laboratory, however, resulted in the isolation of optically active (+)-corynoline from the same source [4]. This paper deals with the structural elucidation of an optically active corynoline homologue which was tentatively named as TN-20 [2].

RESULTS AND DISCUSSION

The tertiary non-phenolic alkaloid fraction, obtained by the previously described method [2], was chromatographed on Si gel and successive elution with hexane-EtOAc (from 4:1 to 100% EtOAc), methyl ethyl ketone and methyl ethyl ketone saturated with water. The fraction eluted with methyl ethyl ketone was further purified by chromatography on Si gel with CHCl₃-MeOH (19:1) to afford TN-20 (1). It contained a sulfur atom as indicated by combustion analysis. The UV spectrum was similar to that of (\pm) -corynoline (2). The MS of TN-20 (1) showed a very weak fragment peak at m/e 367 which corresponds to the M⁺ of (\pm)-corynoline (2). $((\pm)$ -Corynoline (2) showed a molecular ion peak of high intensity at m/e 367.) The ¹H NMR spectrum of TN-20 (1) in DMSO- d_6 showed a C-Me and a N-Me peak, two methylenedioxy peaks, 4 aromatic proton signals and a peak exchangeable with D₂O (Table 1,a). The ¹³C NMR spectrum in DMSO-d₆ contained 21 C atoms (Table 2). The multiplicities for each carbon obtained from off-resonance decoupling experiments corresponded to those for each carbon of (\pm) -corynoline (2) and showed 20 hydrogens attached to the carbon atoms.

The ¹H NMR and ¹³C NMR spectra of TN-20 (1) showed an alternation in the signals when the probe

 $1 R = SO_3H$

2R = H

3 R = Ac

temperature was raised to ca 100°. The ¹H NMR spectrum measured after treatment at ca 100° in DMSO-d₆ or DMSO-d₆-C₅D₅N (ca 3:1) for 10 min showed the other signals (B line) together with the signals (A line) observed at room temperature. The spectra recorded after treatment at 100° for 1-3 hr in each solution showed only the signals of the B line. These spectra were similar to those of the hydrochloride and the sulfate of (\pm) corynoline (2) (Table 1, a and b). The ¹³C NMR spectrum of TN-20 recorded after accumulation for ca 2 hr at 100° in DMSO-d₆-C₅D₅N(ca 3:1) differed from the room temperature spectrum (Table 2). This spectrum remained unchanged as the probe temperature was lowered to room temperature (B and C line in Table 2) and it was in agreement with that of the sulfate of (+)-corynoline (2) (Table 2). The ¹H NMR spectrum recorded after treatment at 100° in C₅D₅N for 10 min differed from the room temperature spectrum and comprised only the signals of the B line (Table 1, c). Heating of TN-20 at 100° in DMSO-d₆-C₅D₅N (ca 3:1), and purification, yielded (+)-corynoline (2), which had an identical IR spectrum to that of naturally occurring (+)-corynoline (2). On the basis of the spectral examinations and upon the result of solvolysis, TN-20 was assumed to be the 11-O-sulfate of (+)-corynoline (2).

The 11-O-sulfate of (\pm) -corynoline was prepared from (\pm) -corynoline (2) by reaction with pyridine-sulfur trioxide complex [5] in CHCl₃. Since the synthetic sample is sparingly soluble in most organic solvents, identification of the product by IR spectrum in a solution with the natural base could not be carried out, but it was identical with the natural alkaloid by ¹H NMR (in trifluoroacetic acid) (Table 1, d) and TLC R_f value. On the

^{*} Part XXXIV in the series "Studies on the Alkaloids of Papaveraceous Plants". For Part XXXIII see Takao, N. and Iwasa, K. (1979) Chem. Pharm. Bull. (Tokyo), in press.

Table 1. ¹H NMR spectral data for TN-20 (1) and corynoline (2) derivatives

		C(13) -Me	N-Me	C(12)-H ₂	C(6)-H ₂	C(14) -H	C(11) -H	OCH ₂ O	C(1) -H	C(4) -H	C(9)-H C(10)-H	NH or OH
[a in DMSO-d ₆]												
TN-20 (1)	A*	1.23	2.9	3.22, d-d (19, 4) 3.64, d-d (19, 1)	4.50 4.73 ABq (15)	4.5	4.73	6.09 br s 6.11 br s	6.92	7.12	7.01 7.17 ABq (8.4)	8.39
	B‡	1.2	2.79	3.12, d (3)	4.52 4.56 ABq (16)	4.52	4.18	6.06, m	6.86	7.17	7.0 7.11 ABq (8)	
	C†	1.18	2.77	3.09, br s	4.53 ABq (16) overlapping	4.53	4.18	6.1, m	6.8	7.21	7.04 7.14 ABq (8)	9.67
(±)-Corynoline (2)	A*	1.06	2.19	2.95, d (2.8)	3.47 3.89 ABq (16)	over- lapping	3.81	6.01 br s	6.74	6.88	6.86 7.01 ABq (8.4)	7.16
(±)-Corynoline hydrochloride (2 HCl)	A*	1.16	2.82	3.11, br s	4.62 br s	4.79	4.19	6.09 br s 6.11 br s	6.9	7.37	7.04 7.14 ABq (8.5)	9.71
	B†	1.19	2.82	3.14, br s	4.62 br s	4.73	4.19	6.04 br s 6.08 m	6.83	7.33	6.99 7.11 ABq (8.5)	
(±)-Corynoline sulfate (2 H,SO ₄)	A*	1.22	2.89	3.16, br s	4.66 br s	over- lapping	4.24	6.14 br s	6.93	7.36	7.02 7.18 ABq (8.5)	
	B†	1.21	2.86	3.14, br s	4.63 br s	4.5	4.22	6.07 br s	6.84	7.29	7.0 7.11 ABq (8)	
[b in DMSO-d ₆ -C ₅ D ₅ N]												
TN-20 (1)	A*	1.48	3.0	3.27, d-d (18, 4.5) 3.53, d-d (18, 5)	4.31 4.46 ABq (16)	4.43	4.94 t (5)	6.07 m 6.13 br s	6.77	7.23	6.98 7.4 ABq (8.4)	
	B†	1.21	2.6	3.13, d (3)	4.11 4.36 ABq (16)	4.14 d(2)	4.08	6.04 m	6.79	7.1	6.93 7.09 ABq (8)	
	C‡	1.24	2.77	3.2, d(2.5)	4.39 4.56 ABq (15.5)	4.41	4.26	6.17 m 6.19 br s	6.8	7.3	7.04 7.14 ABq (8.5)	
(±)-Corynoline hydrochloride (2 HCl)	A*	1.23	2.81	3.22, d (3)	4.55 br s	4.55	4.27	6.16 br s	6.87	7.43	7.0 7.14 ABq (8.4)	
2) al comonos (2 110.)	B+	1.2	2.63	3.16, d (3)	4.26 4.34 ABq (16)	4.13 d (3)	4.22	6.06 br s	6.79	7.21	6.93 7.1 ABq (8.4)	
$\begin{bmatrix} c \text{ in } C_5 D_5 N \end{bmatrix}$ $TN-20 (1)$	A*	1.58	3.07	3.39, d-d (18, 4.5)	4.51 4.56 ABq (16)	4.53	5.36	5.64 br s	6.53	7.38	6.84 7.52 ABq (8.4)	
	B†	1.2	2.29	3.9, d-d (18, 5) 3.17, d-d (18, 4.5)	4.56 ABq (15) 3.66 4.14 ABq (15)	3.59	t (5) 4.14	5.83 br s 5.91 m	6.71	6.92	7.52 ABq (8) 6.87 7.07 ABq (8)	
	C‡	1.22	2.41	3.2, d-d (18, 2.6) 3.21, d-d (18, 4)	3.9 4,27 ABq (15)	3.86	4.22	5.94 br s 6.0 m	6.78	7.16	6.93 7.09 ABq (8)	
[d in CF,CO,H]				3.26, d-d (18, 2)	4,27			6.07 br s			7.09	
TN-20 (1)	A*	1.49	3.11 d (5.5)	3.39, d-d (20, 3) 3.78, d-d (20, 1)	4.39, d-d (15.5, 10) 4.94, d-d (15.5, 2)	4.33 d (9)	5.33 d (3)	6.07 br s	6.87	6.97	7.02 7.18 ABq (8.5)	7.78
(±)-Corynoline acetate (3)	A*	1.53	3.14 d (5.5)	3.42, d-d (20, 4) 3.36, d-d (20, 1)	4.6, d-d (16, 10) 4.92, d-d (16, 2)	4,49 d (9)	5.69 d (4)	6.1 br s	6.84	7.01	7.03 7.11 ABq (8.5)	7.5

^{*} Values recorded at a probe temperature of ca 35°.

basis of irradiation experiments, the proton signals of TN-20 were assigned as shown in Table 1, d. The observed couplings of H-6, H-14 and N-Me protons with the NH proton were in agreement with those obtained for (\pm) -corynoline acetate (3) in trifluoroacetic acid.

The 11-O-sulfate of (+)-corynoline was also prepared from (+)-corynoline (2) by treatment with pyridinesulfur trioxide complex in CHCl, and had an identical IR spectrum to that of the natural alkaloid. TN-20 was

therefore shown to be (+)-corynoline 11-O-sulfate.

The ¹H NMR and ¹³C NMR spectra were examined in order to determine the structure for TN-20 in solution. The ¹H NMR spectrum of TN-20 in DMSO-d₆ showed the signals at lower field relative to those observed for (\pm) -corynoline (2). A similar low field shift was observed between the salt and free base of (\pm) -corynoline (Table 1, a). In the ¹³C NMR spectrum in DMSO-d₆, the signals for C-1a, C-6a and C-10a were found at

Table 2. Carbon-13 spectral data for

		C-Me	C-12	С-Ме	N-Me	C-6	C-14	C-11	OCH ₂ O		C-1
[in DMSO-d _x]											
TN-20(1)	A*	23.14	31.3	40.09	41.63	51.57	67.65	. 78.86	101.47	101.7	108.52
		(q)	(t)	(s)	(q)	(t)	(d)	(d)	(1)	(t)	(d)
(±)-Corynoline (2)	A*	23.34	36.32	40.37	42.44	52.79	68.42	74.79	100.81	101.03	107.02
		(q)	(t)	(8)	(q)	(t)	(d)	(d)	(t)	(t)	(d)
[in DMSO-d ₆ -C ₅ D ₅ N]											
TN-20 (1)	A*	24.78	31.94	40.98	42.4	50.17	67.77	78.86	101.49	101.65	108.12
	B†	22.95	35.4	40.89	41.53	52.15	68.68	74.37	101.46‡	101,77‡	108.32‡
	C§	22.7	35.02	40.48	41.31	51.81	67.77	73.93	101.54	101.88	108.52
(±)-Corynoline sulfate (2 H,SO ₄)	A*	22.59	34.8	40.42	41.16	51.56	67.68	73.96	101.59	101.85	108.82

The indication in parentheses shows multiplicities obtained from 'H off-resonance experiments.

[†] Values recorded after the spectrum changed completely at a probe temperature of ca 100°.

[‡] Values recorded as the probe temperature was lowered from 100° to 35°

Values in parentheses represent approximate coupling constants (d = doublet, bss = broad singlet, ABq = ABquartet, m = multiplet).

^{*} Values recorded at a probe temperature of ca 35°.

 $[\]dagger$ Values recorded after the spectrum changed completely at a probe temperature of $ca~100^\circ$.

[‡] These values were read normally.

[§] Values recorded as the probe temperature was lowered from 100° to 35°.

higher fields than those in (\pm)-corynoline (Table 2). These high field shifts at C-1a (γ position for N atom), C-10a (γ position) and C-6a (β position) might be due to the effects of N-protonation on ¹³C chemical shift as observed for C-4a (γ position for N atom), C-8a (β position), C-12a (γ position) and C-14a (β position) in the ¹³C NMR spectrum (4) of the salt of tetrahydropalmatine in CDCl₃ and trifluoroacetic acid [5]. Therefore TN-20 appears to adopt an inner salt structure in DMSO (5).

Thus, the 11-O-sulfate of (+)-corynoline was isolated from Corydalis incisa Pers. The occurrence of naturally occurring sulfates of steroid hormones and lipids from animal tissues and metabolites is well known [7]. This is the first report to our knowledge of a sulfate of an alkaloid occurring in higher plants. The fact that optically active corynoline was isolated as a sulfate is of interest in connection with the metabolism of this alkaloid in the plant.

EXPERIMENTAL

Mps are uncorr. TLC and PLC were carried out on Si gel PF₂₅₄. ¹H NMR spectra were recorded at 90 MHz at probe temps. of ca 35°, and/or ca 50° and ca 100°. Samples were dissolved in DMSO-d₆ or C₅D₅N, or DMSO-d₆-C₅D₅N (ca 3:1) or CF₃CO₂H containing TMS as internal standard. The ¹³C NMR spectra were measured at 22.6 MHz in 8 mm tubes at

probe temps. of ca 35°, and/or ca 50° and ca 100°. Samples were dissolved in DMSO- d_6 or DMSO- d_6 -C₅D₅N (ca 3:1) containing TMS as an internal standard at a conen of ca 0.2-0.5 mol/l. Conditions of the FT NMR measurements were: spectral width, 5000 Hz; pulse width, 25-30 μ sec; acquisition time, 0.8 sec; number of data points, 8192.

Isolation and identification of TN-20 (1). The tertiary non-phenolic fraction (TN-A fraction), separated by the procedure previously described [2], was applied to a Si gel column and eluted successively with hexane–EtOAc (from 4:1 to 100% EtOAc), MeCOEt and MeCOEt satd with H₂O. Rechromatography of the fraction eluted with MeCOEt using Si gel with CHCl₃–MeOH (19:1) afforded TN-20, colorless prisms, mp $253-254^{\circ}$ (CHCl₃–MeOH), $\left[\alpha\right]_{\rm max}^{22^3} + 67^{\circ}$ (MeOH, c 0.19); IR $v_{\rm max}^{\rm nuiol}$ cm⁻¹: 3100; UV $\lambda_{\rm max}^{\rm MeOH}$ nm: 237 (ε 4.13) and 289 (ε 4.02); MS m/e: 367 (M⁺ – SO₃, weak), 365 (weak), 363 (weak), 349, 334, and 318. (Found: C, 56.17; H, 4.73; N, 2.98; S, 7.15. Calc. for $C_{21}H_{21}NO_8S$: C, 56.37; H, 4.73; N, 3.13; S, 7.17%).

Conversion of TN-20 (1) to (+)-corynoline (2). TN-20 (100 mg) was heated in 0.5 ml DMSO- d_6 - C_5 D₅N (ca 3:1) at probe temp. for ca 2 hr. The soln was coned under red. pres. and the residue separated by PLC on Si gel using MeOH-Et₂O (1:1) followed by C₆H₆-Et₂O (3:7). This afforded an alkaloid which was recrystallized from MeOH-Et₂O to give (+)-corynoline (2), 57 mg, mp 180-181°, $[\alpha]_D^{23}$ + 132° (CHCl₃, c 2.64) identical with naturally occurring (+)-corynoline by IR (KBr).

Preparation of 11-O-sulfate of (\pm) -corynoline (1). (\pm) -Corynoline (0.2 g) in CHCl₃ (5 ml) was shaken at room temp. with Py-sulfur trioxide (1 g) for 2.5 hr. To this soln, Py-sulfur trioxide (1 g) was added and the mixture shaken for 2 hr and then heated under reflux for 5 hr. After cooling, the white crystalline ppt. formed was filtered off, washed with hot MeOH repeatedly to remove unreacted Py-sulfur trioxide, and dried in a vaccum desiccator for several hr. These crystals, mp 268-272°, were sparingly soluble in MeOH, CHCl₃, n-BuOH, sec-BuOH, n-PrOH, and iso-PrOH; IR v_{max}^{nujol} cm⁻¹: 3105; ¹H NMR (CF_3CO_2H) : δ 1.5 (3H, s, C-Me), 3.11 (3H, d, J = 5.3 Hz, N-Me), 6.08 (4H, br s, OCH₂O \times 2), 6.87 (1H, s, Ar-H), 6.97 (1H, s, Ar-H), 7.02, 7.17 (each 1H, d, J = 8.4 Hz, Ar-H); MS m/e: 367 (weak), 365 (weak) 363 (weak), 349, 334, 318. (Found: C, 56.65; H, 4.85; N, 2.19. Calc. for C₂₁H₂₁NO₈S: C, 56.37; H, 4.73; N, 3.13 %).

Preparation of 11-O-sulfate of (+)-corynoline (1). (+)-Corynoline (45 mg) in CHCl₃ (4 ml) was shaken with Py-sulfur trioxide (1 g) for 3.5 hr at room temp. and heated under reflux for 1.5 hr. After addition of Py-sulfur trioxide (500 mg), the mixture was heated under reflux for 1.5 hr. The ppt. formed was filtered off and extracted with CHCl₃. From the CHCl₃ extract, the main product and unreacted (+)-corynoline were separated by PLC

TN-20 (1) and corynoline (2) derivatives

C-9 109.05 (d) 108.8 (d)	C-4	C-6a 110.69 (s) 116.72 (s)	C-10	C-1a 117.94 (s) 125.43 (s)	C-4a 128.97 (s) 127.48 (s)	C-10a 131.57 (s) 136.08 (s)	C-7	C-2, 3, and 8		
	112.77 (d) 112.38 (d)		120.44 (d) 118.78 (d)				142.11 (s) 142.12 (s)	145.23 (s) 144.31 (s)	145.47 (s) 144.84 (s)	149.11 (s) 147.33 (s)
109.03 109.29‡ 109.25 109.34	111.55 113.1‡ 113.33 113.53	112.29 113.54‡ 112.63 111.84	120.99 119.47‡ 119.92 119.53	120.99 121.24‡ 119.41 118.99	129.1 128.76‡ 128.52 128.81	132.15 134.51‡ 133.92 133.47	142.52 142.21‡ 142.64 142.68	145.18 145.62‡ 145.35 145.65	145.84 146.02‡ 145.63 145.65	148.57 149.12‡ 148.96 149.16

on Si gel (C_6H_6 –Et₂O, 1:4). The main product was further purified by repeated PLC on Si gel (CHCl₃–MeOH, 7:3). The ppt. from the reaction mixture was dissolved in MeOH and then purified by PLC on Si gel (CHCl₃–MeOH, 9:1) to afford an alkaloid identical with the above main product. The alkaloid obtained, which was recrystallized from MeOH to give white crystals, mp 252–255°, was identical with natural TN-20 by IR (KBr) and MS.

REFERENCES

 Tani, C. and Takao, N. (1962) Yakugaku Zasshi 82, 594 and 598.

- Nonaka, G., Okabe, M., Nishioka, I. and Takao, N. (1973) Yakuaaku Zasshi 93, 87.
- 3. Kametani, T., Ihara, M. and Honda, T. (1971) *Phytochemistry* **10**, 1881.
- 4. Takao, N., Kamigauchi, M. and Iwasa, K. (1979) *Tetrahedron* (in press).
- 5. Baumgarten, P. (1926) Chem. Ber. 59, 1166.
- Takao, N., Iwasa, K., Kamigauchi, M. and Sugiura, M. (1977) Chem. Pharm. Bull. (Tokyo) 25, 1426.
- Hadd, H. E. and Blickenstaff, R. T. (1969) Conjugates of Steroid Hormones, p. 25. Academic Press, New York and London.